Abstract
Propagation-based phase-contrast X-ray imaging (PB-PCXI) using synchrotron radiation has achieved high-resolution imaging of the lungs of small animals both in real time and in vivo. Current studies are applying such imaging techniques to lung disease models to aid in diagnosis and treatment development. At the Australian Synchrotron, the Imaging and Medical beamline (IMBL) is well equipped for PB-PCXI, combining high flux and coherence with a beam size sufficient to image large animals, such as sheep, due to a wiggler source and source-to-sample distances of over 137 m. This study aimed to measure the capabilities of PB-PCXI on IMBL for imaging small animal lungs to study lung disease. The feasibility of combining this technique with computed tomography for three-dimensional imaging and X-ray velocimetry for studies of airflow and non-invasive lung function testing was also investigated. Detailed analysis of the role of the effective source size and sample-to-detector distance on lung image contrast was undertaken as well as phase retrieval for sample volume analysis. Results showed that PB-PCXI of lung phantoms and mouse lungs produced high-contrast images, with successful computed tomography and velocimetry also being carried out, suggesting that live animal lung imaging will also be feasible at the IMBL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.