Abstract

The purpose of this study is to demonstrate the feasibility of verification and documentation in electron beam radiotherapy using the photon contamination detected with an electronic portal imaging device. For investigation of electron beam verification with an EPID, the portal images are acquired irradiating two different tissue equivalent phantoms at different electron energies. Measurements were performed on an Elekta SL 25 linear accelerator with an amorphous-Si electronic portal imaging device (EPID: iViewGT™, Elekta Oncology Systems, Crawley, UK). As a measure of EPID image quality contrast (CR) and signal-to-noise ratio (SNR) are determined. For characterisation of the imaging of the EPID RW3 slabs and a Gammex 467 phantom with different material inserts are used. With increasing electron energy the intensity of photon contamination increases, yielding an increasing signal-to-noise ratio, but images are showing a decreasing contrast. As the signal-to-noise ratio saturates with increasing dose a minimum of 50 MUs is recommended. Even image quality depends on electron energy and diameter of the patient, the acquired results are mostly sufficient to assess the accuracy of beam positioning. In general, the online EPID acquisition has been demonstrated to be an effective electron beam verification and documentation method. The results are showing that this procedure can be recommended to be routinely and reliably done in patient treatment with electron beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.