Abstract

Recent outbreaks of coronavirus disease 2019 (COVID-19) has led a global pandemic cross the world. Most countries took two main interventions: suppression like immediate lockdown cities at epicenter or mitigation that slows down but not stopping epidemic for reducing peak healthcare demand. Both strategies have their apparent merits and limitations; it becomes extremely hard to conduct one intervention as the most feasible way to all countries. Targeting at this problem, this paper conducted a feasibility study by defining a mathematical model named SEMCR, it extended traditional SEIR (Susceptible-Exposed-Infectious-Recovered) model by adding two key features: a direct connection between Exposed and Recovered populations, and separating infections into mild and critical cases. It defined parameters to classify two stages of COVID-19 control: active contain by isolation of cases and contacts, passive contain by suppression or mitigation. The model was fitted and evaluated with public dataset containing daily number of confirmed active cases including Wuhan and London during January 2020 and March 2020. The simulated results showed that 1) Immediate suppression taken in Wuhan significantly reduced the total exposed and infectious populations, but it has to be consistently maintained at least 90 days (by the middle of April 2020). Without taking this intervention, we predict the number of infections would have been 73 folders higher by the middle of April 2020. Its success requires efficient government initiatives and effective collaborative governance for mobilizing of corporate resources to provide essential goods. This mode may be not suitable to other countries without efficient collaborative governance and sufficient health resources. 2) In London, it is possible to take a hybrid intervention of suppression and mitigation for every 2 or 3 weeks over a longer period to balance the total infections and economic loss. While the total infectious populations in this scenario would be possibly 2 times than the one taking suppression, economic loss and recovery of London would be less affected. 3) Both in Wuhan and London cases, one important issue of fitting practical data was that there were a portion (probably 62.9% in Wuhan) of self-recovered populations that were asymptomatic or mild symptomatic. This finding has been recently confirmed by other studies that the seroprevalence in Wuhan varied between 3.2% and 3.8% in different sub-regions. It highlights that the epidemic is far from coming to an end by means of herd immunity. Early release of intervention intensity potentially increased a risk of the second outbreak.

Highlights

  • Throughout human history, Infectious diseases (ID), known as transmissible diseases or communicable diseases, are considered as serious threats to global public health and economics [1]

  • From the 1918 influenza pandemic in Spain resulting in nearly 50 million deaths in 1920s, to recent ongoing global outbreaks of corona-virus disease 2019 (COVID-19) killing over 11 thousands people in all over the world [2], infectious disease is a leading contributor to significant mortality and causes huge losses to society as well as personal family burden

  • Among a variety of factors leading to emergence and outbreaks of ID, the key issues are population density and human mobility where in these cities with developed transportation systems, pathogens can be spread to large geographic space within a short period of time

Read more

Summary

Introduction

Throughout human history, Infectious diseases (ID), known as transmissible diseases or communicable diseases, are considered as serious threats to global public health and economics [1]. The ongoing global epidemic outbreak of COVID-19 has spread to at least 146 countries and territories on 6 continents in 2 months. In order to give an accurate prediction of outbreaks, many researchers have been working in traditional ID propagation models [3,4,5,6,7] like SIR, SEIR, etc, for understanding COVID-19 transmission with human mobility and predicting outbreak process of epidemics. As realizing a long period of this battle against COVID-19, many of them recently focus on intervention strategies [8,9,10] that can balance a trade-off between limited human mobility and potential economic loss in COVID-19 control. It poses an important research area that explores how and when to take what level of interventions in light of multiple natures and capabilities of countries

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.