Abstract

The fast-ion velocity distribution function is crucial for understanding fast-ion behavior and transport in future burning plasmas. However, direct measurements of this distribution are difficult due to its high-dimensional nature, necessitating inference from diagnostic data. To infer fast-ion velocity distributions in KSTAR experimental conditions, we explored the feasibility of using measurements from fast-ion Dα (FIDA) diagnostics. We assessed the reconstruction quality for two phantoms, representing a possible fast-ion distribution scenario and local velocity-space structures. We calculated the phase-space weight function of FIDA measurements, required for tomographic inversion, by modeling the measurements, and also developed a tomography code with Phillips–Tikhonov regularization. The phantom test results revealed limitations in the reconstruction capability of current FIDA systems in KSTAR, particularly near low-pitch regions. We also identified the influence of spatial bias of the weight function of the current FIDA systems. Introducing a new FIDA system to tomographic inversion process provided wider coverage in velocity space and the weight function with reduced spatial bias, thereby improving reconstruction capability, especially in low-pitch regions. We also scanned noise levels in the phantom tests and observed the benefits of using prior information to mitigate degradation of the reconstruction quality caused by noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.