Abstract
The study explores the potential transition of China's electric power sector to zero emissions by 2050. Using a capacity expansion model (CEPRO) with 31 regions, hourly time resolution, and 39 years of historical reanalysis weather data (MERRA-2), we simulate the expansion and operation of the power sector, considering solar and wind energy as the primary source of generation. The results suggest that zero-emissions power generation can be achieved with mostly wind and solar energy and alternative sets of balancing technologies. We show that a high-renewables power system can operate without significant storage and provide a high level of reliability. Besides storage, the balancing can be achieved by a partially flexible load, expansion of power grid, and backup capacity. The four balancing options and the level of reliability of the system are substitutes for one another, making at least storage or backup generation optional. Most importantly, a high-renewables power system is competitive, with the supply-side levelized system cost of electricity as low as 0.2–0.3 CNY/kWh (about 3–4 US cents per kWh) even without consideration of further reductions in the cost of renewables. • High spatial and temporal resolution modeling of China's electric power sector in 2050 with optimization of generating capacity structure, long-distance grid, energy storage, regional and temporal allocation of demand • 64 scenarios demonstrate feasibility of high-VER generation with high reliability of supply • With current costs of renewables, system-wide cost of supply might be lower than current thermal generation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.