Abstract

Extrusion profiles are extensively used in industries and any improvement in the process could potentially have a large impact on energy and cost savings. In this study, a novel extrusion method, namely multi-container extrusion, was proposed for producing thin-walled wide aluminium components with low force. Its basic principle is to enable multiple billets to be welded and forced through die orifice simultaneously. To demonstrate its feasibility, a series of studies have been conducted including the experimental design and set-up of multi-container extrusion, microstructural and mechanical characterisations of the extruded components, and the comparison with the existing extrusion method. A three-container extrusion tooling was designed and manufactured to produce wide hollow profiles with plasticine and aluminium alloy AA6063. Optical microscopic observations and tensile tests were carried out for different positions of AA6063 extrudates. For the specimens near the extrudate front (8 mm and 23 mm away), tensile fractures occurred exactly along the distinct welds which were formed when individual billets met inside the die during extrusion. Further away from the extrudate front (83 mm, 98 mm and 113 mm), the welds were hardly observed, and the tensile fractures occurred outside the welds, indicating that good welding quality can be obtained in the multi-container extrusion process. Compared with the conventional porthole extrusion method, three-container extrusion could significantly reduce the required force to about 15 % for extruding the same profile. This study demonstrates that the proposed multi-container extrusion method can form wide profiles and greatly reduce the extrusion force requirement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.