Abstract

This paper describes the feasibility studies of a hybrid DC circuit breaker (CB) for quench protection of superconducting magnets rated for current up to some tens of kiloamperes (kA) and voltage of several kilovolts (kV). The proposed scheme is based on a mechanical switch paralleled to a fully controlled static CB; integrated gate commutated thyristors (IGCTs) were selected. In normal operation, the mechanical switch handles the continuous flow of DC current minimizing the on-state losses. When protection against quench is requested, the current is diverted into the static breaker that quickly interrupts the current, withstanding the reapplied voltage of several kV. The reliable turn-ON of several IGCTs in parallel with low voltage applied between anode and cathode is an issue to be assessed to confirm the feasibility of this design solution. The paper highlights that the components commonly used as snubber or protection circuit can guarantee the turn-ON of all the devices in parallel and that the IGCTs can be turned-ON with few volts applied; this latter aspect was proved by means of specific tests. Finally, a comparison between a static only and a hybrid CB is performed, highlighting the benefits introduced by the hybrid solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.