Abstract

ITER Neutral Beam Injectors (NBIs) need to be shielded from the relatively strong stray magnetic field generated by the Poloidal Field Coils of the Tokamak. For this reason both the Heating Neutral Beams (HNB) and the Diagnostic Neutral Beam (DNB) will be provided with a Passive Magnetic Shield and with a system of Active Correction and Compensation Coils (ACCC). The ACCC will operate in feedback control and thus require the measurement of magnetic field inside the NBI vessel, i.e. in an environment subjected to the neutron flux coming from the Tokamak. To this purpose, magnetic sensors which are robust, radiation hard, drift-immune and remote-handling compatible are required.Flux-gate magnetic sensors are a good candidate for this task, but commercial sensors of this kind have typically a limited measured range (below 0.1mT).The feasibility of a flux-gate sensor for the ITER NBI has been studied by developing a numerical model which includes magnetic core hysteresis, and which demonstrated that, by suitable choice of the core magnetic properties and geometry, it is possible to increase the measurement range by at least 2 orders of magnitude. On this basis, a flux-gate sensor prototype has been realized at Consorzio RFX. Experimental tests carried out so far have demonstrated that the measurement range can be increased to ∼10mT with acceptable accuracy and frequency bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.