Abstract

A 1.5-GeV Fixed-Field Alternating-Gradient (FFAG) proton Accelerator is being studied as a new injector to the Alternating-Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The major benefit is that it would considerably shorten the overall AGS acceleration cycle, and, consequently, may yield to an improvement of beam stability, intensity and size. The AGS-FFAG, as we shall call the new injector, will also facilitate the proposed upgrade of the AGS facility toward a 1-MW average proton beam power at the top energy of 28 GeV. This paper describes the FFAG design for acceleration of protons from 400 MeV to 1.5 GeV, with the same circumference of the AGS, and entirely housed in the AGS tunnel. The lattice is a periodic sequence of FDF triplets of combined-function magnets. An adjusted magnet field profile has been calculated to compensate the variation of the main lattice functions with momentum. At injection, a 1.0-ms long beam pulse of negative-ions (H) is stacked using the chargeexchange method. Acceleration of one pulse with 1.0 x 10 protons takes about 7.0 msec. The beam is transferred in one single turn from the FFAG to the AGS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.