Abstract

PurposeApplication of MRF to evaluate the feasibility of 2D Dixon blurring-corrected MRF (2DDb-cMRF) to differentiate breast cancer (BC) from normal fibroglandular tissue (FGT). MethodsProspective study on 14 patients with unilateral BC on 1.5 T system/axial T2w-TSE sequence, 2DDb-cMRF, B1 map, dynamic contrast-enhanced (DCE) T1-w GE-series. Mean T1 and T2 values and standard deviations were computed in the BC-/FGT-ROI on pre-/post-contrast MRF-maps and their differences were tested by two-tailed student t-test.Accuracy and repeatability of MRF were evaluated in a phantom experiment with gelatin with Primovist surrounded by fat.The T1 reduction between pre-/post-contrast MRF-maps was correlated to DCE signal enhancement in the last image post-contrast through the Pearson´s correlation coefficient (r) and for the phantom validation experiment through the Lin’s concordance correlation coefficient (CCC).Visual evaluation of cancers on MRF-Maps was performed by rating each MRF-Map by 3 radiologists. ResultsT1- and T2-MRF values of BC vs. FGT were for T1 and T2 pre-contrast respectively: 1147 ± 1 ms vs. 1052 ± 9 ms (p = 0.007) and 83 ± 1 ms vs. 73 ± 1 ms (p = 0.03); post-contrast respectively: 367.3 ± 121.5 ms vs. 690.3 ± 200.3 ms (p = 0.0005) and 76.9 ± 11.5 ms vs. 69.8 ± 15.2 ms (p = 0.12). r was positive (FGT r = 0.7; BC r = 0.6). CCC was 0.999 for T1 and 0.994 for T2. In the T1- and T2-MRF-Maps before contrast respectively (7,7,8)/14 and (5,9,8)/14 cancers were visible to the readers; afterwards, (11,12,12)/14 and (5,6,11)/14. ConclusionsMRF is promising for distinction between BC and FGT as well as for analyzing pre-/post-contrast T1 changes. However, its potential for differential diagnosis warrants further studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call