Abstract

A promising solution for inductive power transfer and wireless charging is presented on the basis of a single-phase three-level T-type Neutral Point Clamped GaN-based inverter with two coupled transmitting coils. The article focuses on the feasibility study of GaN transistor application in the wireless power transfer system based on the T-type inverter on the primary side. An analysis of power losses in the main components of the system is performed: semiconductors and magnetic elements. System modeling was performed using Power Electronics Simulation Software (PSIM). It is shown that the main losses of the system are static losses in the filter inductor and rectifier diodes on the secondary side, while GaN transistors can be successfully used for the wireless power transfer system. The main features of the Printed Circuit Board (PCB) design of GaN transistors are considered in advance.

Highlights

  • Interest in inductive wireless power transmission is constantly growing due to the increasing interests of both low-power wireless chargers for mobile and wireless charging stations of medium and high power for electric bikes and electric vehicles

  • An experimental model was made to check the feasibility of using GaN transistors in the described scheme (Figure 4)

  • Transistors are located at the bottom of the Printed Circuit Board (PCB) without additional radiators

Read more

Summary

Introduction

Interest in inductive wireless power transmission is constantly growing due to the increasing interests of both low-power wireless chargers for mobile and wireless charging stations of medium and high power for electric bikes and electric vehicles. Such chargers transfer the electric energy wirelessly from primary to secondary inductor by means of inductive coupling [1]. Inductive wireless power transfer systems consist of a transmitting part (contains an inverter, compensation circuit and primary inductor) and a receiving part (receiving inductor, compensation circuit, rectifier) [1]. It is well known that Wireless Power Transfer (WPT) systems have some limitations, such as short transmission distance(centimeters or dozens of centimeters at acceptable levels of transmission efficiency) [2,3], sensitivity to the exact positioning of the receiving coil relative to the transmission coil [2,4], size and cost of the system.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call