Abstract

A panel of 15 biological toxins ranging between approximately 60-28,000 g/mol was used to evaluate the feasibility of screening aqueous samples for toxin analytes based on their translational diffusion coefficients, D(t). Toxin D(t) values were measured by pulsed-field gradient (1)H NMR spectroscopy using a bipolar pulse pair, longitudinal eddy current delay pulse sequence incorporating water suppression to achieve the maximum dynamic range for toxin signals. To collect data for an effective screening protocol, reference D(t) values were determined from five independent measurements at both 25 and 37 degrees C for all toxins in the panel. In the protocol, D(t) values are measured at both temperatures for a suspected toxin target in a sample, and for assignment as a potential toxin analyte, the measurements are required to fall within +/-0.25 x 10(-6) cm(2)/s of both reference D(t) values for at least one toxin in the panel. Only solution viscosity was found to influence sample D(t) measurements appreciably; however, the measurements are easily corrected for viscosity effects by calculating the D(t) value of the suspected toxin at infinite dilution. In conclusion, the protocol provides a rapid and effective means for screening aqueous samples for all toxins in the panel, narrowing toxin identification to < or = 2 possibilities in virtually all cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call