Abstract
AbstractThis communication presents efficient focusing of radiofrequency for the non-invasive local hyperthermia treatment (HT) of breast tumors. Hyperthermia technique is used to raise the tumor temperature from 42–45 °C. In this combinational therapy, controlled heating at tumor site plays a vital role in the success of HT; else it creates hotspots on surrounding area of the treatment site. In this communication we are presenting mathematical analysis for the temperature distribution during the HT, Computational complexity for effective focusing of radio waves on tumor sites, and 2D modeling of breast model for testing the feasibility of HT. Pennes bio-heat equation is used for thermal analysis of tumor and healthy tissue in MATLAB environment, whereas thermal conduction parameters of 2D breast model are acquired from finite element method by imposing radiation, and convection boundary conditions. Heat flow modeling and electrostatic modeling of the 2D breast model with two tumors is carried out. 2D modeling result shows that HT is safe and reliable if temperature parameters are maintained in the safe limit, avoids hotspots on healthy surrounding tissue and reduces toxicity to a greater extent. Also, the obtained results for magnitude of electric flux density, heat flow in the tumors shows higher efficiency, with minimized hotspots.KeywordsAntennaCancerHyperthermia treatment (HT)Electrostatic and Heat flow modelingRadiofrequency (RF)TissueTumor
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.