Abstract
An evaluation of alternative techniques of in-situ dynamic testing for the calibration of fragility functions and finite element models of existing structures and geotechnical systems subjected to seismic ground motions is discussed in this paper. The cases of excitation of bridge structures, buildings and soils are considered, remembering that also effects on components, non-structural elements and dams can be studied. The advantage of these techniques is to perform in-situ tests on full scale systems in their real conditions and state of maintenance imposing ground motions or effective dynamic excitations, even at low frequencies. A dynamic testing system consisting of a totally independent mobile laboratory has been specifically designed and constructed. Peculiar requirements are necessary to achieve the test set-up, including the development of specific methods to build the reaction system and to prepare the base of the buildings. Finally, a feasibility study to evaluate the capability of the proposed dynamic testing system to study the phenomenon of liquefaction in-situ has been carried out by means of three-dimensional coupled dynamic analysis based on the effective stress approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.