Abstract

A feasibility study was initiated to determine if downstream migrant salmonids could be monitored to determine potential relationships between total dissolved gas (TDG) exposure and signs of gas bubble trauma (GBT). The primary objectives were to: (1) establish logistical requirements for in-river monitoring of TDG exposure, including net pen design, deployment, and navigation constraints; (2) resolve uncertainties associated with effects of the net pen on fish behavior; (3) test the accuracy and precision of in-river monitoring equipment used to measure fish distribution and water quality; and (4) determine the application of hydrologic/flow models to predictions of TDG exposure. In-river measurements included water velocity, boat position, and selected water quality parameters (temperature, dissolved oxygen, pH, depth, conductivity). Fish distribution within the net pen was monitored using scanning sonar, and a split-beam echo sounder was used to evaluate vertical distribution of fish m in the river adjacent to the net pen. Three test drifts were conducted from late July through late August. The studies demonstrated that it was feasible to assemble and deploy a large net pen for mobile monitoring of TDG exposure. Accurate monitoring of vertical and lateral distribution of smolts was performed, and diel differences in behavior were documented. Further,more » the fish sounded in response to researcher activity on the perimeter platform. Thus, in-transit monitoring for GBT or mortality would affect fish depth distribution and exposure to TDG. Principal recommendations for future studies are directed at improving maneuverability of the net pen in adverse weather conditions and applying new acoustics technology to simultaneously collect fish distribution data from within and outside of the pen. 6 refs., 17 figs., 2 tabs.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call