Abstract

Engineering change is a significant cost for projects. While avoiding and mitigating the risk of change is ideal, mistakes and improvements are recognised as more is learned about the decisions made in a design. This paper presents a feasibility and performance analysis of automating engineering change requests to demonstrate the promise for increasing speed, efficiency, and effectiveness of product-lifecycle-wide engineering-change-requests. A comparatively simple case is examined to mimic the reduced set of alterable aspects of a typical change request and to highlight the need of appropriate search algorithms as brute force methods are prohibitively resource intensive. Although such cases may seem trivial for human agents, with the volume of expected change requests in a typical facility, the potential opportunity gain by eliminating or reducing the amount of human effort in low-level changes accumulate into significant returns for the industry on time and money. Herein, the genetic algorithm is selected to demonstrate feasibility with its broad scope of applicability and low barriers to deployment. Future refinement of this or other sophisticated algorithms leveraging the nature of the standard representations and qualities of alterable design features could produce tools with strong implications for process efficiency and industry competitiveness in its projects execution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.