Abstract

BackgroundApplying 3D printing technology for the fabrication of custom-made orthoses provides significant advantages, including increased ventilation and lighter weights. Currently, the design of such orthoses is most often performed in the CAD environment, but creating the orthosis model is a time-consuming process that requires significant CAD experience. This skill gap limits clinicians from applying this technology in fracture treatment. The purpose of this study is to develop a parametric model as the design generator for 3D–printed orthoses for an inexperienced CAD user and to evaluate its feasibility and ease of use via a training and design exercise.ResultsA set of automatic steps for orthosis modeling was developed as a parametric model using the Visual Programming Language in the CAD environment, and its interface and workflow were simplified to reduce the training period. A quick training program was formulated, and 5 participants from a nursing school completed the training within 15 mins. They verified its feasibility in an orthosis design exercise and designed 5 orthoses without assistance within 8 to 20 mins. The few faults and program errors that were observed in video analysis of the exercise showed improvable weaknesses caused by the scanning quality and modeling process.ConclusionsCompared to manual modeling instruction, this study highlighted the feasibility of using a parametric model for the design of 3D–printed orthoses and its greater ease of use for medical personnel compared to the CAD technique. The parametric model reduced the complex process of orthosis design to a few minutes, and a customized interface and training program accelerated the learning period. The results from the design exercise accurately reflect real-world situations in which an inexperienced user utilizes a generator as well as demonstrate the utility of the parametric model approach and strategy for training and interfacing.

Highlights

  • Applying 3D printing technology for the fabrication of custom-made orthoses provides significant advantages, including increased ventilation and lighter weights

  • The same technology has been applied to fracture immobilization of the upper limb, and related studies have rapidly increased in recent years [8,9,10,11,12,13,14]

  • A parametric CAD model for 3D–printed orthosis design was developed for clinicians who were inexperienced with CAD tools

Read more

Summary

Introduction

Applying 3D printing technology for the fabrication of custom-made orthoses provides significant advantages, including increased ventilation and lighter weights. The design of such orthoses is most often performed in the CAD environment, but creating the orthosis model is a time-consuming process that requires significant CAD experience. This skill gap limits clinicians from applying this technology in fracture treatment. The necessary wearable designs, such as flexible gaps, hinges or interlocking components, are generated at this stage as well It is often a challenge for the clinician to achieve initial treatment, design, and modeling steps in a 3D virtual environment, and this challenge includes the required time for orthosis modeling and the significant learning period necessary to utilize the specific CAD tool

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.