Abstract
CO2 capture and underground storage, combined with geothermal resource exploitation, are vital for future sustainable and renewable energy. The SUCCEED project explores the feasibility of re-injecting CO2 into geothermal fields to enhance production and store CO2 for climate change mitigation. This integration requires novel time-lapse monitoring approaches. At the Hellisheiði geothermal power plant in Iceland, seismic surveys utilizing conventional geophones and a permanent fiber-optic helically wound cable (HWC) for Distributed Acoustic Sensing (DAS) were designed to provide subsurface information and CO2 monitoring. This work details the feasibility study and active seismic acquisition of the baseline survey, focusing on optical fiber sensitivity, seismic modeling, acquisition parameters, source configurations, and quality control. Post-acquisition signal analysis using a novel electromagnetic vibrating source is discussed. The integrated analysis of datasets from co-located sensors improved quality-control performance and geophysical interpretation. The study demonstrates the advantages of using densely sampled DAS data in space by multichannel processing. This experimental work highlights the feasibility of using HWC DAS cables in active surface seismic surveys with an environmentally friendly electromagnetic source, providing also a unique case of joint signal analysis from different types of sensors in high-temperature geothermal areas for energy and CO2 storage monitoring in a time-lapse perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.