Abstract

Many important engineering applications such as nuclear reactors, ships, pipes and pressure vessels are shell-like structures made with weldments. For such a structure, a major problem is the development of residual stress and distortion due to welding. Residual stresses in weldments significantly affect stress corrosion cracking, hydrogen-induced cracking and fatigue strength in welded structures. As-welded components generally have certain amount of residual stresses caused by the application of intense heat or thermal loading at the weld joint, formed due to non-uniform cooling rates at different points in the weld metal and heat affected zones. Presence of residual stresses in a component is detrimental as they may lead to failure below the design stress value and also affect many important properties including the life of a welded component. Welding induced residual stresses can significantly increase the fracture driving force in a weldment and also contribute to brittle fracture. The thermal cycle imposed on any welded object causes thermal expansions and contractions which are not uniform. Quantitative measurement of residual stresses is essential to take remedial measures such as change in the welding technique, optimizing welding parameters (heat input, electrode diameter etc,), change in the weld groove design and post-weld heat treatment for minimizing the residual stresses. Residual stress measurements after post-weld treatment would also ensure the adequacy of stress relief treatment. To have an investigation into these aspects, residual stresses due to Manual Metal Arc Welding and Submerged Arc Welding were measured nondestructively with Ultrasonic technique. Residual stress distribution for Shielded Metal Arc Welding and Submerged Arc Welding were compared and the present studies emphasized, that Shielded Metal Arc Welding gave higher compressive stresses than Submerged Arc Welding. Further, to substantiate the studies, commercial finite element analysis software ANSYS 5.6 was used for modeling of manual metal arc welded joint. The results obtained by ANSYS were compared with those by Ultrasonic method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call