Abstract

The purpose of our work was to assess the feasibility of hindcasting waves using WAVEWATCH-III (WW3) in a typhoon by assembling winds from multiple remote-sensed products. During the typhoon season in 2021–2022, the swath wind products in the Western Pacific Ocean were collected from scatterometers and radiometers. Cyclonic winds with a spatial resolution of 0.125° at intervals of 6 h were obtained by assembling the remote-sensed winds from those satellites. The maximum wind speeds, Vmax, were verified using the reanalysis data from the National Hurricane Center (NHC), yielding a root-mean-squared error (RMSE) of 4.79 m/s and a scatter index (SI) value of 0.2. The simulated wave spectrum was compared with the measurements from Surface Waves Investigation and Monitoring (SWIM) carried out on the Chinese–French Oceanography Satellite (CFOSAT), yielding a correlation coefficient (Cor) of 0.80, squared error (Err) of 0.49, RMSE of significant wave height (SWH) of 0.48 m with an SI of 0.25, and an RMSE of the peak wave period (PWP) of 0.95 s with an SI of 0.10. The bias of wave (WW3 minus European Centre for Medium-Range Weather Forecasts (ECMWFs) reanalysis (ERA-5)) concerning the bias of wind (assembling minus ERA-5) showed that the WW3-simulated SWH with the assembling wind forcing was significantly higher than that with the ERA-5 wind forcing. Moreover, the bias of SWH gradually increased with an increasing bias of wind speed; i.e., the bias of SWH increased up to 4 m as the bias of wind speed reached 30 m/s. It was concluded that the assembling wind from multiple scatterometers and radiometers is a promising source for wave simulations via WW3 in typhoons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.