Abstract

Pulse irrigation, the practice of applying water in small doses over time, is known to reduce deep percolation and runoff and, relative to irrigating in single continuous applications, can increase plant growth and production by supplying water and nutrients at an optimal rate. The objective of the present study was to determine whether pulse irrigation was beneficial in red raspberry (Rubus idaeus L. ‘Wakefield’). Treatments included continuous or pulse drip irrigation and were evaluated for three growing seasons (2018–20) in a commercial field with silt loam soil. Continuous irrigation was applied up to 4 hours/day, whereas pulse irrigation was programmed to run for 30 minutes every 2 hours, up to eight times/day, using the same amount of water as the continuous treatment. Pulsing improved soil water availability relative to continuous irrigation and, by the second and third year, increased fruit production by 1210 to 1230 kg·ha−1, which, based on recent market prices, was equivalent to $2420 to $2460/ha per year. Much of this yield increase occurred during the latter 3 to 4 weeks of the harvest season and was primarily due to larger fruit size during the second year and more berries per plant during the third year. In 1 or both years, pulse irrigation also produced more canopy cover, larger cane diameters, and higher concentrations of Mg and S in the leaves than continuous irrigation, but it reduced K and B in the soil and had variable effects on sugar-to-acid ratio in the berries. On the basis of these results, pulsing appears to be an effective means of irrigating raspberry plants in sandy or silty loam soils, but more research is needed to determine whether it is useful technique in heavier soil types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call