Abstract

Abstract This paper addresses the feasibility of using mulliwavelength lidar measurements to differentiate both qualitatively and quantitatively between the relative concentrations of hygroscopic and nonhygroscopic aerosol particles. The proposed technique utilizes the fact that hygroscopic particles undergo a size increase and refractive-index change with increasing relative humidity and that different wavelengths respond to these changes in different ways. The lidar wavelengths considered are 0.289, 0.355, 0.532, 0.694, 1.064, and 2.02 µm and the 9–11.5-µm range. It is shown that under certain conditions, a judicious choice of lidar wavelengths can provide a differential backscatter, sufficient to provide information on the size and percentage number concentration of the hygroscopic aerosol and, consequently, cloud condensation nuclei concentration. The presence of a mode of coarse particles (median radius greater than 0.3 µm) produces ambiguous results and limits application of the technique to regions...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.