Abstract

Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance is to use direct vapour generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables to operate the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixture at high temperatures without corroding the equipment by using suitable additives with the mixture. This paper assesses the thermodynamic feasibility of using ammonia-water mixture in high temperature (450 ̊C) and high pressure (over 100 bar) concentrated solar power plants with direct vapour generation. The following two cases are compared for the analysis: a simple Rankine cycle and an ammonia-water cycle with a separator for varying the ammonia mass fraction within the cycle. Thermodynamic simulations are performed using Aspen Plus and MATLAB, and performances in terms of overall plant efficiency are evaluated. The comparison between the two cycles when operating from a two-tank molten-salt storage system is also presented. The results suggest that the ammonia-water mixtures show a clear advantage while operating from storage but the simple Rankine cycle outperforms the ammonia-water cycle when the heat input is from solar receiver only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call