Abstract
Construction and demolition waste (CDW) management should focus on reducing CDW or properly recycling the materials since this waste is now a global problem. Sand brick waste, a component of a building’s structure, is one type of CDW. To be used as recycled aggregate, these wastes are invariably categorised as low grade. Due of the improved qualities provided, geopolymer research has recently become more popular. The objective of this study is to investigate the physical and mechanical properties of recycled sand brick aggregate (RSB) treated with silica fume based geopolymer coating. Additionally, the effectiveness of the treated RSB will be applied in concrete as coarse aggregate. The sample was made using a solid-to-liquid ratio of 1.0, 1.2, 1.4, 1.6, and 1.8. At 2.5 and 10 M, alkaline activator is a constant variable. Testing of specific gravity, water absorption, and aggregate impact value were analysed. The treated RSB concrete will then be evaluated against normal concrete. In terms of density, water absorption, and compressive strength, natural concrete performs better than treated RSB concrete. In comparison to natural concrete, treated RSB concrete absorbs 5.8% more water. Treated RSB concrete has a density of 1815 kg/m3, compared to natural concrete’s 2080 kg/m3. The compressive strength of concrete made using treated RSB aggregate is 18.1 MPa after 7 days, and 27.1 MPa at 28 days. The testing revealed that the treated RSB aggregate concrete met the specifications. As a result, treated RSB aggregate concrete offers an advantage over natural OPC concrete while saving the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.