Abstract
The purpose of this study was to investigate whether the novel image-based noise reduction software (NRS) improves image quality, and to assess the feasibility of using this software in combination with hybrid iterative reconstruction (IR) in image quality on thin-slice abdominal CT. In this retrospective study, 54 patients who underwent dynamic liver CT between April and July 2017 and had a body mass index higher than 25 kg/m2 were included. Three image sets of each patient were reconstructed as follows: hybrid IR images with 1-mm slice thickness (group A), hybrid IR images with 5-mm slice thickness (group B), and hybrid IR images with 1-mm slice thickness denoised using NRS (group C). The mean image noise and contrast-to-noise ratio relative to the muscle of the aorta and liver were assessed. Subjective image quality was evaluated by two radiologists for sharpness, noise, contrast, and overall quality using 5-point scales. The mean image noise was significantly lower in group C than in group A (p < 0.01), but no significant difference was observed between groups B and C. The contrast-to-noise ratio was significantly higher in group C than in group A (p < 0.01 and p = 0.01, respectively). Subjective image quality was also significantly higher in group C than in group A (p < 0.01), in terms of noise and overall quality, but not in terms of sharpness and contrast (p = 0.65 and 0.07, respectively). The contrast of images in group C was greater than that in group A, but this difference was not significant. Compared with hybrid IR alone, the novel NRS combined with a hybrid IR could result in significant noise reduction without sacrificing image quality on CT. This combined approach will likely be particularly useful for thin-slice abdominal CT examinations of overweight patients.
Highlights
Computed tomography (CT) plays an important role in diagnosis and therapeutic management
The NCCN guidelines for pancreatic cancer and cholangiocarcinoma recommend the evaluation of spread to the blood vessels and surgical planning in CT three-phase cross-sectional imaging with thinner slices for detecting tumor [2,3]
Oguro et al reported that 22 upper gastrointestinal tract perforations and 19 lower gastrointestinal tract perforations were correctly identified as sites of perforation in 80.5% of patients when 2-mm axial and 1-mm multiplanar reconstruction (MPR) images were used [14]
Summary
Computed tomography (CT) plays an important role in diagnosis and therapeutic management. Hybrid IR is a popular choice for reducing image noise and improving image quality. Recent advancements in MDCT have allowed image acquisition with thinner collimation and more rapid scan times, enabling better image resolution to delineate abdominal disease and abnormalities. Abdominal CT examinations in overweight patients remain challenging owing to the substantially higher radiation doses required and are associated with a substantially decreased low-contrast detectability compared with examinations in non-overweight patients [6]. CT image noise strongly depends on the patient’s body size and the tube current applied during data acquisition. It is theoretically a priori possible to increase the number of photons and, increase the radiation dose, and to obtain image quality even with a 1-mm slice compared to a 5-mm slice acquired with a lower tube current [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.