Abstract

Using fertilizers, in line with other agrotechnical activities, is one of the most important means for increasing soil fertility, as well as agricultural products performance. Domestic and foreign experience shows us that yield capacity can grow almost 1.5-fold due to fertilizers. Nowadays the surface type of using hard organic and mineral fertilizers by means of body spreaders is considered to be one of the simplest technically and most effective ways. Being the object of the research, the experimental mineral and organo-mineral granular fertilizers spreader is a van-type lowboy, equipped with a belt conveyor and a vertical rotor with a horizontal axis of rotation. In addition to load bearing characteristics, rotational movement of the operative parts in the casing of the rotary drum provides for air drag, which influences the trajectory of fertilizers flight. Pattern of fertilizer distribution, flight distance of fertilizer particles and horsepower input of the gear system depend on the design features of the operative parts of the pneumatic-mechanical rotor. The objective of the research is to define travel speed of fertilizer particles along vanes in case of constant fertilizer input with air drag in versions with radial position of vanes, bent backwards and forwards to some angle. The main research techniques are a graphical and analytical method and analysis of the component force which operates on the blade's surface. As for the drum with a diameter of 920 mm, at rotation frequency of 850 min-1, the best performance was shown by the through blade. They may reduce the friction force of the casing of rotor. Besides, they can concentrate fertilizers in the center of a blade, and achieve qualitative work of the fertilizer spreader, is ascertaining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call