Abstract

Surface plasmon lasing in semiconductor gain media at far-infrared frequencies requires simultaneously long non-radiative recombination times and large plasmon propagation length. In this paper, we show that these conditions are realized in mercury-telluride quantum wells (HgTe QWs) near the topological transition. We derive the conditions of surface plasmon amplification in HgTe QWs with interband population inversion. To this end, we calculate the spatially-dispersive high-frequency conductivity of pumped HgTe QWs taking into account their realistic band structure, and compare the interband gain with Drude absorption and collisionless Landau damping. An extra necessary condition of plasmon lasing is revealed, namely, the non-equilibrium carrier density should be high enough to make the plasmon spectrum overlap with the frequency domain of interband excitations. The latter condition limits the processes of both stimulated and spontaneous plasmon emission at low temperatures, and should have a strong impact on the recombination kinetics of HgTe QWs at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call