Abstract

Temperature and tissue stiffness are two indices that can be used to monitor MRI-guided focused ultrasound thermal therapy. It would be beneficial to have both measures available to monitor treatment progression during thermal therapy. MR Elastography (MRE) has already been shown to provide tissue stiffness information; the purpose of this work is to demonstrate how temperature can be derived from the same MRE data acquisition. MRE data were acquired from 1.5% agarose phantoms and ex vivo porcine muscle tissue (from a grocery store) while they were heated slowly. The temperatures were measured using a fluorescent thermometer. The phase average from the MRE acquisition was used to calculate the phase shift induced by the proton resonance frequency shift associated with the temperature change. The results show that the phase shift due to temperature extracted from MRE data correlate well with the temperature change recorded by thermometer, yielding a temperature coefficient of -0.0096 ppm/ degrees C for the agarose phantom, and -0.0103 ppm/ degrees C for the ex vivo porcine tissue. These results indicate that it is possible to simultaneously measure both temperature and tissue shear stiffness using a new method of MRE data reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.