Abstract

ObjectiveMolecular diagnostic assays require samples with high nucleic acid content to generate reliable data. Similarly, programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) requires samples with adequate tumor content. We investigated whether shape-sensing robotic-assisted bronchoscopy (ssRAB) provides adequate samples for molecular and predictive testing. MethodsWe retrospectively identified diagnostic samples from a prospectively collected database. Pathologic reports were reviewed to assess adequacy of samples for molecular testing and feasibility of PD-L1 IHC. Tumor cellularity was quantified by an independent pathologist using paraffin-embedded sections. Univariable and multivariable linear regression models were constructed to assess associations between lesion- and procedure-related variables and tumor cellularity. ResultsIn total, 128 samples were analyzed: 104 primary lung cancers and 24 metastatic lesions. On initial pathologic assessment, ssRAB samples were deemed to be adequate for molecular testing in 84% of cases; on independent review of cellular blocks, median tumor cellularity was 60% (interquartile range, 25%-80%). Hybrid capture-based next-generation sequencing was successful for 25 of 26 samples (96%), polymerase chain reaction-based molecular testing (Idylla; Biocartis) was successful for 49 of 52 samples (94%), and PD-L1 IHC was successful for 61 of 67 samples (91%). Carcinoid and small cell carcinoma histologic subtype and adequacy on rapid on-site evaluation were associated with higher tumor cellularity. ConclusionsThe ssRAB platform provided adequate tissue for next-generation sequencing, polymerase chain reaction-based molecular testing, and PD-L1 IHC in >80% of cases. Tumor histology and adequacy on intraoperative cytologic assessment might be associated with sample quality and suitability for downstream assays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.