Abstract

BackgroundFor stroke survivors, balance deficits that persist after the completion of the rehabilitation process lead to a significant risk of falls. We have recently developed a balance-assessment robot (BAR-TM) that enables assessment of balancing abilities during walking. The purpose of this study was to test feasibility of using the BAR-TM in an experimental perturbed-balance training program with a selected high-functioning stroke survivor.MethodsA control and an individual with right-side chronic hemiparesis post-stroke were studied. The individual post-stroke underwent thirty sessions of balance-perturbed training that involved walking on an instrumented treadmill while the BAR-TM delivered random pushes to the participant’s pelvis; these pushes were in various directions, at various speeds, and had various perturbation amplitudes. We assessed kinematics, kinetics, electromyography, and spatio-temporal responses to outward-directed perturbations of amplitude 60 N (before training) and 60 N and 90 N (after training) commencing on contact of either the nonparetic-left foot (LL-NP/L perturbation) or the paretic-right foot (RR-P/R perturbation) while the treadmill was running at a speed of 0.4 m/s.ResultsBefore training, the individual post-stroke primarily responded to LL-NP/L perturbations with an in-stance response on the non-paretic leg in a similar way to the control participant. After training, the individual post-stroke added adequate stepping by making a cross-step with the paretic leg that enabled successful rejection of the perturbation at lower and higher amplitudes. Before training, the individual post-stroke primarily responded to RR-P/R perturbations with fast cross-stepping using the left, non-paretic leg while in-stance response was entirely missing. After training, the stepping with the non-paretic leg was supplemented by partially recovered ability to exercise in-stance responses on the paretic leg and this enabled successful rejection of the perturbation at lower and higher amplitudes. The assessed kinematics, kinetics, electromyography, and spatio-temporal responses provided insight into the relative share of each balancing strategy that the selected individual post-stroke used to counteract LL-NP/L and RR-P/R perturbations before and after the training.ConclusionsThe main finding of this case-control study is that robot-based perturbed-balance training may be a feasible approach. It resulted in an improvement the selected post-stroke participant’s ability to counteract outward-directed perturbations.Trial registrationClinicalTrials.gov Identifier: NCT03285919 – retrospectively registered.

Highlights

  • For stroke survivors, balance deficits that persist after the completion of the rehabilitation process lead to a significant risk of falls

  • Prior to the training (BEFORE_60), the individual post-stroke responded with an in-stance strategy on the non-paretic left leg (NP/L) by substantially shifting COPx laterally in the direction of the perturbation (0–25% of gait cycle – GC; Fig. 2, 2nd row); this was done partially through using an ankle strategy and partially by repositioning the stance foot by rapidly moving COPy (0–25% of gait cycle – GC; Fig. 2, 4th row) first toward the toes, to enable the heel to lift slightly and move laterally by pivoting the stance leg around the toes, followed by rapid displacement of COPy toward the heel to enable lifting slightly the forefoot, bringing it laterally by pivoting the stance leg around the heel

  • A noticeable GRFx (Fig. 2, 3rd row) force impulse was generated under the non-paretic left leg (0–25% of GC) using the hip strategy

Read more

Summary

Introduction

Balance deficits that persist after the completion of the rehabilitation process lead to a significant risk of falls. Balance and gait deficits that persist after the completion of the rehabilitation process are significant risk factors and may not be detected by clinical scales as these do not evaluate a person’s ability to respond to unexpected perturbations during walking [2]. There is a particular risk of hip fracture from more frequent sideways falls [1] These often result from inadequate capacity to respond efficiently to a loss of balance during standing and walking that occurs as a consequence of a floor slip or a push that acts in a frontal plane [3]. If the foot placement in the first and subsequent steps following the perturbation is not adequate, there may be further self-induced perturbations and these may not be limited to the frontal plane and occur in the sagittal plane [4, 8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.