Abstract
Compared to photon therapy, proton therapy allows a better conformation of the dose to the tumor volume with reduced radiation dose to co-irradiated tissues. In vivo verification techniques including positron emission tomography (PET) have been proposed as quality assurance tools to mitigate proton range uncertainties. Detection of differences between planned and actual dose delivery on a short timescale provides a fast trigger for corrective actions. Conventional PET-based imaging of 15O (T1/2 = 2 min) and 11C (T1/2 = 20 min) distributions precludes such immediate feedback. We here present a demonstration of near real-time range verification by means of PET imaging of 12N (T1/2 = 11 ms). PMMA and graphite targets were irradiated with a 150 MeV proton pencil beam consisting of a series of pulses of 10 ms beam-on and 90 ms beam-off. Two modules of a modified Siemens Biograph mCT PET scanner (21 × 21 cm2 each), installed 25 cm apart, were used to image the beam-induced PET activity during the beam-off periods. The modifications enable the detectors to be switched off during the beam-on periods. 12N images were reconstructed using planar tomography. Using a 1D projection of the 2D reconstructed 12N image, the activity range was obtained from a fit of the activity profile with a sigmoid function. Range shifts due to modified target configurations were assessed for multiples of the clinically relevant 108 protons per pulse (approximately equal to the highest intensity spots in the pencil beam scanning delivery of a dose of 1 Gy over a cubic 1 l volume). The standard deviation of the activity range, determined from 30 datasets obtained from three irradiations on PMMA and graphite targets, was found to be 2.5 and 2.6 mm (1σ) with 108 protons per pulse and 0.9 and 0.8 mm (1σ) with 109 protons per pulse. Analytical extrapolation of the results from this study shows that using a scanner with a solid angle coverage of 57%, with optimized detector switching and spot delivery times much smaller than the 12N half-life, an activity range measurement precision of 2.0 mm (1σ) and 1.3 mm (1σ) within 50 ms into an irradiation with 4 × 107 and 108 protons per pencil beam spot can be potentially realized. Aggregated imaging of neighboring spots or, if possible, increasing the number of protons for a few probe beam spots will enable the realization of higher precision range measurement.
Highlights
Compared to radiotherapy with photons, proton therapy offers the benefit of delivering a more conformal dose to the tumor volume while reducing the dose to co-irradiated normal tissues
Analytical extrapolation of the results from this study shows that using a scanner with a solid angle coverage of 57%, with optimized detector switching and spot delivery times much smaller than the 12N half-life, an activity range measurement precision of 2.0 mm (1σ) and 1.3 mm (1σ) within 50 ms into an irradiation with 4 × 107 and 108 protons per pencil beam spot can be potentially realized
The coincident counts as a function of the bin value in the 1D projection of the images of a line source placed in the center of the field of view (FoV) along either the X-axis or the Y-axis of the scanner are shown in figure 7
Summary
Compared to radiotherapy with photons, proton therapy offers the benefit of delivering a more conformal dose to the tumor volume while reducing the dose to co-irradiated normal tissues. This benefit is derived from the finite range of protons and the high dose deposition at the end of the proton trajectory. In clinical practice, treatment plans are designed to be robust against these uncertainties through addition of safety margins (van Herk et al 2000, Albertini et al 2011, Paganetti 2012). Depending on the magnitude of the considered range uncertainty scenarios, the adoption of these robust planning techniques may still lead to the delivery of extra dose to normal tissues and thereby compromise the reduction of radiation-induced side effects which is the main rationale for proton therapy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.