Abstract
The article focuses on the possibility of manufacturing bimetallic products for specific industrial applications using laser-directed energy deposition (LDED) additive technology to replace the traditional brazing process. Preferential process regimes were determined by parametric analysis for the nickel-alloy–steel and molybdenum–steel pairs. Comparative studies of the microstructure and hardness of the deposited layers and the transition layer at the boundary of the alloyed materials have been carried out. It is shown that LDED provides better transition layer and operational properties of the final part since the low-melting copper layer is no longer needed. A combined technological process has been developed, which consists in combining the traditional method of manufacturing a workpiece through the casting and deposition of a molybdenum layer by LDED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.