Abstract

To study the feasibility of producing nanoparticles of organic pharmaceuticals using a novel high-gravity reactive precipitation (HGRP) technique, reactive precipitation of benzoic acid as a model compound was carried out in a rotating packed bed under high gravity. The main factors such as the rotating bed speed, concentration and volume flow rate of the reactants (sodium benzoate and HCl) affecting the particle size of the precipitate were studied. Particle size was measured by transmission electron microscopy. Benzoic acid was precipitated as nanoparticles as fine as 10 nm. The particle size was decreased with increasing rotating bed speed, concentration and volume flow rate of the reactants. The formation of ultrafine particles was due to intensified micro-mixing of reactants in the rotating bed to enhance nucleation while suppressing crystal growth. The results have demonstrated the feasibility to produce nanodrugs by the principle of acid–base precipitating reaction using HGRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.