Abstract

Background: Severe thoracic trauma affects 55% of patients with multiple traumatic injuries and may lead to acute lung injury or acute respiratory distress syndrome. Pulmonary trauma differs clinically and biologically from lung injury of other origins and carries a mortality rate of 10%. Treatment options are limited, and it is not possible to monitor the progression of lung injury with specific biomarkers. Microdialysis of pleural fluid may offer a viable entry to monitor the lung directly and specifically. Bronchial microdialysis has been described, but not pleural microdialysis. We therefore investigated the feasibility of microdialysis of pleural fluid, and its ability to detect pulmonary injury and inflammation in the pleural cavity after traumatic acute lung injury.Methods: 16 pigs (mean weight 64 kg) were randomized to groups “exposed with MD”, receiving a focally severe pulmonary contusion and microdialysis (n = 7), “control with MD”, receiving only microdialysis and no pulmonary contusion (n = 5), “normal no MD” receiving only anesthesia (n = 2) and “naïve no MD” (no instrumentation) (n = 2). Microdialysate from the pleura and the perilesional subcutis, plasma and bronchoalveolar lavage were collected for 5 hours.Results: Pleura lactate, plasma lactate and pleura lactate/pyruvate ratio increased in injured lungs (p < 0.05). Subcutis and plasma glucose increased after trauma (p < 0.05). Pleura glycerol increased although not reaching statistical significance. IL-6 and IL-8 were dissimilar in plasma, bronchoalveolar lavage and pleural fluid, while IL-1 did not differ. Neutrophils increased in bronchoalveolar lavage (p < 0.001) after trauma, and in pleural fluid, although not when the microdialysis catheter was omitted.Conclusion: Pleural microdialysis was technically feasible and detected signs of cellular injury and anaerobic metabolism after focally severe pulmonary contusion and may be of interest for future clinical applications. The microdialysis catheter triggered a recruitment of neutrophils to the pleura which needs to be elucidated further before taking the technique into clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.