Abstract

Research to assess the feasibility of developing a standoff active or passive optical tripwire detector is discussed. Reflectives of typical tripwires and background materials were measured for UV, VNIR and SWIR wavelengths. A breadboard testbed was developed to obtain images of tripwires against various backgrounds for various geometries and a wide range of VU and VNIR wavelengths. Sample images of simulated and real tripwires in uncluttered environments and against typical cluttered backgrounds were acquired and analyzed. Line detection algorithms were applied to the images to detect tripwires. Although detection was not attempted in real-time, analysis showed that available, cost-effective DSPs could potentially execute those algorithms on the images in real-time. The algorithms successfully detected tripwires in a heavily cluttered background and even have the capability to detect partially obscured wires. To complement the measurements, a spreadsheet model was developed to evaluate the merits of different detectors, sources of illumination, wavebands and geometries for different scenarios. Acceptable signal-to- clutter ratios were found for a number of reasonable passive and active illumination scenarios. The study demonstrated that an optical tripwire detector is feasible in principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.