Abstract
In the diagnostic radiology field, reducing the radiation dose for patient lead to increased noise in image. Since increases of noise decrease the diagnosis rate, to reduce the noise is necessary. In this study quantitatively evaluates the four widely used and newly verified filters which remove noise in image: median, Wiener, total variation, and fast non local means (FNLM). For that purpose, X-ray and computed tomography (CT) images are acquired using MATLAB simulation with 3D voxelized phantom. To evaluate image performance, normalized noise power spectrum (NNPS), contrast to noise ratio (CNR) and coefficient of variation (COV) were used. As a result, we can efficiently remove noise in X-ray image when FNLM filter was used compared with frequently used filters. In conclusion, our results demonstrated that our proposed FNLM filter shows superior denoising performance, which is expected to enhance the detection of diseases in clinical images with low dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.