Abstract
PurposeTo investigate the predictive value of MRI-based radiomics features for lymph node metastasis (LNM) and vascular endothelial growth factor (VEGF) expression in patients with cervical cancer. MethodA total of 163 patients with cervical cancer were enrolled in this study. A total of 134 patients were included for LNM differentiation, and 118 were included for VEGF expression discrimination. The patients were randomly assigned to the training group or test group at a ratio of 2:1. Radiomics features were extracted from T1WI enhanced and T2WI MRI scans of each patient, and tumor stage was also documented according to the International Federation of Gynecology and Obstetrics (FIGO) guidelines. The least absolute shrinkage and selection operator algorithm was used for feature selection. The results of 5-fold cross validation were applied to select the best classification models. The performances of the constructed models were further evaluated with the test group. ResultsSixteen radiomics features and the FIGO stage were selected to construct the LNM discrimination model. The LNM prediction model achieved the best diagnostic performance, with areas under the receiver operating curve (AUCs) of 0.95 and 0.88 in the training group and test group, respectively. Nine radiomics characteristics were screened to build the VEGF prediction model, with AUCs of 0.82 and 0.70 in the training group and test group, respectively. Decision curve analysis confirmed their clinical usefulness. ConclusionsThe presented radiomics prediction models demonstrated potential to noninvasively differentiate LNM and VEGF expression in cervical cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.