Abstract

Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.