Abstract
Aperture-based near-field microscopy suffers from fundamental limitations imposed by the electromagnetic skin depth of the aperture material and a rapidly decreasing throughput as the aperture is made smaller. Apertureless approaches without these limitations have been demonstrated for coherent imaging but are not easily applicable to incoherent processes such as fluorescence or Raman scattering and to photochemical surface modification. Using multi-photon processes in conjunction with the field enhancement that occurs at a sharp tip in close apposition to a substrate should permit substantial localization of absorption and excitation to a nm sized volume. The expected enhancement of the optical field at the tip edge is calculated here for various combinations of metallic and nonmetallic tip and substrate materials. It is estimated that when using 100 fs pulses repeating at 100 MHz average laser powers of about 10 mW should be sufficient to reach saturating field strengths for three-photon absorption. Steady state and instantaneous temperature rises at the tip are estimated and found likely not to be a limiting factor. Fluorescence quenching is expected to limit the resolution achievable with metallic tips to about 5 nm, but tips made from highly refracting insulators or semiconductors should allow truly molecular resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.