Abstract

Irrigation management practices that reduce water use with acceptable impacts on yield are important strategies to cope with diminished water supplies and generate new sources of water to transfer for other agricultural uses, and urban and environmental demands. This study was intended to assess the effects of moderate water deficits, with the goal of maintaining robust alfalfa (Medicago sativa L.) yields, while conserving on-farm water. Data collection and analysis were conducted at four commercial fields over an 18-month period in the Palo Verde Valley, California, from 2018–2020. A range of deficit irrigation strategies, applying 12.5–33% less irrigation water than farmers’ normal irrigation practices was evaluated, by eliminating one to three irrigation events during selected summer periods. The cumulative actual evapotranspiration measured using the residual of energy balance method across the experimental sites, ranged between 2,031 mm and 2.202 mm, over a 517-day period. An average of 1.7 and 1.0 Mg ha−1 dry matter yield reduction was observed under 33% and 22% less applied water, respectively, when compared to the farmers’ normal irrigation practice in silty loam soils. The mean dry matter yield decline varied from 0.4 to 0.9 Mg ha−1 in a clay soil and from 0.3 to 1.0 Mg ha−1 in a sandy loam soil, when irrigation water supply was reduced to 12.5% and 25% of normal irrigation levels, respectively. A wide range of conserved water (83 to 314 mm) was achieved following the deficit irrigation strategies. Salinity assessment indicated that salt buildup could be managed with subsequent normal irrigation practices, following deficit irrigations. Continuous soil moisture sensing verified that soil moisture was moderately depleted under deficit irrigation regimes, suggesting that farmers might confidently refill the soil profile following normal practices. Stand density was not affected by these moderate water deficits. The proposed deficit irrigation strategies could provide a reliable amount of water and sustain the economic viability of alfalfa production. However, data from multiple seasons are required to fully understand the effectiveness as a water conservation tool and the long-term impacts on the resilience of agricultural systems.

Highlights

  • Due to recurring droughts and altered weather patterns, the Colorado River Basin is facing increasing uncertainty concerning water supplies

  • This study aimed at assessing the effectiveness of moderate deficit irrigation strategies during summer harvest cycles on conserving water and maintaining a robust hay production

  • The proposed deficit irrigation strategies conducted showed a promising and decent amount of water conservation and simultaneously generated desirable hay yields and quality. Yield penalties of this practice must be considered. These moderate deficit irrigation practices resulted in an average of 1.47 Mg ha−1 and 0.31 Mg ha−1 hay yield reduction, but used

Read more

Summary

Introduction

Due to recurring droughts and altered weather patterns, the Colorado River Basin is facing increasing uncertainty concerning water supplies. While more than 95% of California’s low desert alfalfa (nearly 80,000 hectares) is currently irrigated by surface irrigation systems [2], one strategy to enhance water-use efficiency and on-farm water conservation in alfalfa fields is through improved technology of water delivery. Improved systems, such as subsurface drip irrigation, overhead linear move sprinkler irrigation, automated surface irrigation, and tailwater recovery systems might enable more precise control of irrigation water. Many of these technologies were already adopted by local farmers, the process of adoption is continuing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call