Abstract

This study aimed to measure marginal and internal fit using images captured with both an optical microscope and a smartphone camera, comparing the fit measurement performance of these devices and analyzing their correlation. Working casts (with 10 posterior and 10 anterior teeth) created to fabricate fixed dental prostheses were used. These working casts were scanned using a desktop scanner (E1) to design an interim crown, and the designed interim crown was fabricated using a three-dimensional (3D) printer. Utilizing the silicone replica technique, the fabricated interim crown replicated the fit, which was then captured using both an optical microscope and a smartphone camera. The captured images were used to measure the marginal and internal fit according to the imaging device. Intraclass correlation coefficients (ICC) were used for reliability analysis according to the imaging device. Furthermore, the Wilcoxon signed-rank test was adopted for the comparative evaluation of the marginal and internal fit between the imaging devices (α = 0.05). The measurement results of the marginal and internal fit according to the optical microscope and smartphone camera did exhibit a significant difference (P < 0.05). The ICC between the two devices showed an “excellent” agreement of over 0.9 at all measurement points (P < 0.001). A smartphone camera could be used to obtain images for evaluating the marginal and internal fit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call