Abstract

BackgroundRecent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions.MethodsWe developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A “two rings” method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score.ResultsMeasurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation.ConclusionWe showed that four-dimensional, preoperative simulation can be generated by adding the rotation axis to the one-position, three-dimensional computed tomography image of the affected arm. This method is feasible for elbow debridement arthroplasty.Electronic supplementary materialThe online version of this article (doi:10.1186/s12891-016-0996-9) contains supplementary material, which is available to authorized users.

Highlights

  • Recent advances in imaging modalities have enabled three-dimensional preoperative simulation

  • Several techniques reported for debridement arthroplasty for elbow osteoarthritis include a posterolateral approach, lateral and medial approach, posteromedial approach, medial trans-flexor approach, and arthroscopic approach [2,3,4,5,6,7]

  • By calculating the joint axis to move the elbow joint and adding a time dimension to three-dimensional computed tomography (CT) images, we can create a fourdimensional simulation for debridement arthroplasty for elbow osteoarthritis using computer-aided design (CAD) software

Read more

Summary

Introduction

Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions. Several techniques reported for debridement arthroplasty for elbow osteoarthritis include a posterolateral approach, lateral and medial approach, posteromedial approach, medial trans-flexor approach, and arthroscopic approach [2,3,4,5,6,7]. Each technique has advantages and disadvantages, it is challenging for the surgeon to identify the critical impingement area in the complicated degenerated elbow. By calculating the joint axis to move the elbow joint and adding a time dimension to three-dimensional CT images, we can create a fourdimensional simulation for debridement arthroplasty for elbow osteoarthritis using computer-aided design (CAD) software. The four-dimensional simulation can help surgeons identify impingement lesions that should be removed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call