Abstract

The feasibility of estimating patient-specific dose verification results directly from linear accelerator (linac) log files has been investigated for prostate cancer patients who undergo volumetric modulated arc therapy (VMAT). Twenty-six patients who underwent VMAT in our facility were consecutively selected. VMAT plans were created using Monaco treatment planning system and were transferred to an Elekta linac. During the beam delivery, dynamic machine parameters such as positions of the multi-leaf collimator and the gantry were recorded in the log files; subsequently, root mean square (rms) values of control errors, speeds and accelerations of the above machine parameters were calculated for each delivery. Dose verification was performed for all the plans using a cylindrical phantom with diodes placed in a spiral array. The gamma index pass rates were evaluated under 3%/3 mm and 2%/2 mm criteria with a dose threshold of 10%. Subsequently, the correlation coefficients between the gamma index pass rates and each of the above rms values were calculated. Under the 2%/2 mm criteria, significant negative correlations were found between the gamma index pass rates and the rms gantry angle errors (r = 0.64, p < 0.001) as well as the pass rates and the rms gantry accelerations (r = 0.68, p < 0.001). On the other hand, the rms values of the other dynamic machine parameters did not significantly correlate with the gamma index pass rates. We suggest that the VMAT quality assurance (QA) results can be directly estimated from the log file thereby providing potential to simplify patient-specific prostate VMAT QA procedure.

Highlights

  • Volumetric modulated arc therapy (VMAT) is a high precision beam delivery technique that dynamically varies multi-leaf collimator (MLC) leaf positions and dose rates during gantry rotation on a linear accelerator [1]

  • The feasibility of estimating patient-specific dose verification results directly from linear accelerator log files has been investigated for prostate cancer patients who undergo volumetric modulated arc therapy (VMAT)

  • VMAT plans were created using Monaco treatment planning system and were transferred to an Elekta linac. Dynamic machine parameters such as positions of the multi-leaf collimator and the gantry were recorded in the log files; subsequently, root mean square values of control errors, speeds and accelerations of the above machine parameters were calculated for each delivery

Read more

Summary

Introduction

Volumetric modulated arc therapy (VMAT) is a high precision beam delivery technique that dynamically varies multi-leaf collimator (MLC) leaf positions and dose rates during gantry rotation on a linear accelerator (linac) [1]. Because of this complexity, patient-specific quality assurance (QA) was routinely performed by comparing measured and calculated dose distributions inside a phantom, where the dose distributions were measured by a film, an ionization chamber [2] or a detector array [3] [4]. This was instantaneous correlation during VMAT delivery and not for prediction of patient-specific dose verification results

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.