Abstract
A decision-support model for determining the feasibility of a planned energy-from-waste (EfW) investment for an integrated waste management and energy supply system is presented. The aim is to present an easy-to-understand, inexpensive and fast-to-use tool to decision-makers for modelling and evaluating different kinds of processes. Special emphasis is put on forming the model and interpretation of the results of the example case. The simple integrated system management (SISMan) model is presented through a practical example of the use of the model. In the example the viability of the described system is studied by comparing five different cases including different waste-derived fuels (WDF), non-segregated municipal solid waste (MSW) being one of the fuel options. The nominal power output of the EfW plant varied in each case according to the WDF classification. The numeric values for two main variables for each WDF type were determined, the WDF price at the gate of the EfW plant and the waste management fee (WMF) according to the 'polluter pays' -principle. Comparison between the five cases was carried out according to two determinants, the WMF related to each case and the recovery rate related to each case. The numeric values for the constants and variables used in the calculations were chosen as realistically as possible using available data related to the issue. In the example of this paper, the mass-incineration solution ('pure' MSW as a fuel) was found to be the most viable solution for the described system according to the calculations. However, the final decision of the decision-makers might differ from this in the real world due to extra 'fuzzy' information that cannot be reliably included in the calculations. This paper shows that certain key values of modelled systems can be calculated using an easy-to-use tool at the very early stages of a larger design process involving municipal and business partners. The use of this kind of tools could significantly decrease the overall design costs of large systems in the long run by cutting out irrational system options at the very beginning of the planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Waste Management & Research: The Journal for a Sustainable Circular Economy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.