Abstract

Deep brain stimulation (DBS) has developed into an effective therapy for several disease states including treatment-resistant Parkinson disease and medically intractable essential tremor, as well as segmental, generalized and cervical dystonia, and obsessive-compulsive disorder (OCD). Dystonia and OCD are approved with Humanitarian Device Exemption. In addition, DBS is also approved for the treatment of epilepsy in the anterior nucleus of the thalamus. Although overall considered an effective treatment for Parkinson disease and epilepsy, a number of specific factors determine the treatment success for DBS including careful patient selection, effective postoperative programming of DBS devices and accurate electrode placement. Furthermore, invasiveness of the procedure is a rate limiter for patient adoption. It is desired to explore a less invasive way to deliver DBS therapy. Here, we report for the first time the direct comparison of endovascular and parenchymal DBS in a triplicate ovine model using the anterior nucleus of the thalamus as the parenchymal target for refractory epilepsy. Triplicate ovine studies show comparable sensing resolution and stimulation performance of endovascular DBS with parenchymal DBS. The results from this feasibility study opens up a new frontier for minimally invasive DBS therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.