Abstract

High-frequency (≥ 2 Hz) Multi-channel Analysis of Love Waves (MALW) provides a practical way to determine velocity of horizontally polarized shear (SH) waves for a layered earth model up to 30 meters below the ground surface in many geological settings. The information used in the MALW method is phase of Love waves. Information on amplitude of Love waves is not utilized in the MALW method. In this paper we present a method that uses information on amplitude of high-frequency Love waves to estimate quality factors (Qs) of near-surface materials. Unlike Rayleigh waves, attenuation coefficients (amplitude) of Love waves are independent of quality factors for P waves and are function of quality factors for S waves. In theory, a fewer parameters make the inversion of attenuation coefficients of Love waves more stable and reduce the degree of nonuniqueness. We discussed sensitivity of an inversion system based on a linear relationship between attenuation coefficients and dissipation factors (1/Qs). The sensitivity analysis suggested that damping and constraints to an inversion system are necessary to obtain a smooth and meaningful quality factor model when no other information is available. We used real-world data to demonstrate feasibility of inversion of attenuation coefficients of high-frequency Love-wave data acquired with the MALW method for quality factors with a linear, damped and constrained system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call