Abstract

This study introduced a combined computational fluid dynamics (CFD) and echocardiography methodology to simulate blood flow in the single right ventricle (SRV) and normal ventricles to study the intraventricular flow. Derived from echocardiographic image loops, CFD-based three-dimensional (3D) flow models of normal subject's left ventricle (LV) and right ventricle (RV) and SRV with and without heart failure at three characteristic diastolic statuses were reconstructed. The CFD derived morphological and functional measurements in normal ventricles and the SRV were validated with echocardiography. The vortex in the normal ventricles and the SRV were studied. The morphological and functional measurements derived from CFD modeling and echocardiography were comparable, and both methods demonstrated the larger volume and higher spherical index in the SRV, in particular the SRV with heart failure. All the vortices in the SRV were smaller than those in the normal control subject's LV and RV, notably with heart failure. Unlike normal LV and RV, no vortex ring was observed in the SRV. Echocardiography-based CFD demonstrated the feasibility of quantifying ventricular morphology and function; in addition, CFD can detect the abnormal flow pattern (smaller or obliterated vortices) in the SRV when compared with normal ventricles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.