Abstract
To precisely determine heme and non-heme iron contents in meat product, the feasibility of combining spectral with texture features extracted from multispectral imaging data (405–970nm) was assessed. In our study, spectra and textures of 120 pork sausages (PSs) treated by different temperatures (30–80°C) were analyzed using different calibration models including partial least squares regression (PLSR) and LIB support vector machine (Lib-SVM) for predicting heme and non-heme iron contents in PSs. Based on a combination of spectral and textural features, optimized PLSR models were obtained with determination coefficient (R2) of 0.912 for heme and of 0.901 for non-heme iron prediction, which demonstrated the superiority of combining spectra with texture data. Results of satisfactory determination and visualization of heme and non-heme iron contents indicated that multispectral imaging could serve as a feasible approach for online industrial applications in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.