Abstract
Chromosomal translocations resulting in fusion genes represent important oncogenic drivers and potential therapeutic targets in rare leukemia subtypes. Formalin-fixed, paraffin-embedded trephines are frequently used in hematologic diagnostic tests and provide relevant access to leukemic cells for further studies, for example, phenotyping in bone marrow fibrosis. However, high-throughput molecular analysis of nucleic acids obtained from this material is challenging, especially the reliable detection of RNA transcripts. Sixty-three formalin-fixed, paraffin-embedded bone marrow trephines of patients with chronic eosinophilic leukemia, chronic myeloid leukemia, acute myeloid leukemia, and myeloproliferative neoplasms were analyzed for gene mutations and the presence of fusion transcripts with a commercial amplicon-based next-generation sequencing approach. Fusion transcripts relevant for diagnosis and therapy could be detected and validated (by RT-PCR) in 25 patients (39.7%). Retrospectively selected material, up to 10 years old, was used for this purpose, and only one sample failed in the RNA analysis (1.6%). This study concludes that amplicon-based fusion transcript detection in bone marrow trephines is feasible and that bone marrow trephines taken for histologic assessment can also be applied for high-throughput molecular analysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.