Abstract

An ensemble-based data assimilation approach is developed to characterize the snow water equivalent (SWE) and underlying soil freeze-thaw state (including the soil surface temperature and both soil ice and liquid water content) using multifrequency passive and active microwave remote-sensing measurements. Its feasibility was examined using a synthetic test where passive microwave (1.4, 18.7, and 36.5 GHz) and active microwave [L-band (1.4 GHz), C-band (5.4 GHz), and Ku-band (12 GHz)] measurements at the point scale were individually and simultaneously assimilated to estimate the SWE and soil freeze-thaw state using an Ensemble Batch Smoother framework. The contribution of each channel in retrieving the true SWE, soil surface temperature, soil liquid water and ice content was investigated at the local-scale observation site of the National Aeronautics and Space Administration Cold Land Processes Experiments Field Campaign in northern Colorado during both the snow accumulation (Fall 2002-Winter 2003) and melt (Spring 2003) periods. All of the utilized passive and active measurements were found to contain valuable and complementary information for characterizing the SWE and freeze-thaw state of the underlying soil. L-band measurements were most effective for soil freeze-thaw state estimation, whereas higher frequencies were more effective at SWE characterization. In addition, results from the simultaneous assimilation of passive and active microwave data were compared to those from a modeling approach without assimilating microwave data (open loop). It was found that assimilating both passive and active microwave data decreased the errors that are associated with the open-loop approach. Finally, passive and active measurements were undersampled as expected from the overpasses of current and future satellite platforms. It was observed that the developed method can reliably estimate the soil freeze-thaw state and SWE, even with measurement sequences anticipated from the temporal frequency of existing and future satellites such as the Special Sensor Microwave/Imager, Soil Moisture Active Passive Mission, and Cold Regions Hydrology High-Resolution Observatory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call